Bayesian ensemble methods for survival prediction in gene expression data

نویسندگان

  • Vinícius Bonato
  • Veerabhadran Baladandayuthapani
  • Bradley M. Broom
  • Erik P. Sulman
  • Kenneth D. Aldape
  • Kim-Anh Do
چکیده

MOTIVATION We propose a Bayesian ensemble method for survival prediction in high-dimensional gene expression data. We specify a fully Bayesian hierarchical approach based on an ensemble 'sum-of-trees' model and illustrate our method using three popular survival models. Our non-parametric method incorporates both additive and interaction effects between genes, which results in high predictive accuracy compared with other methods. In addition, our method provides model-free variable selection of important prognostic markers based on controlling the false discovery rates; thus providing a unified procedure to select relevant genes and predict survivor functions. RESULTS We assess the performance of our method several simulated and real microarray datasets. We show that our method selects genes potentially related to the development of the disease as well as yields predictive performance that is very competitive to many other existing methods. AVAILABILITY http://works.bepress.com/veera/1/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

The Iterative Bayesian Model Averaging Algorithm for Survival Analysis: an Improved Method for Gene Selection and Survival Analysis on Microarray Data

Survival analysis is a supervised learning technique that in the context of microarray data is most frequently used to identify genes whose expression levels are correlated with patient survival prognosis. Survival analysis is generally applied to diseased samples for the purpose of analyzing time to event, where the event can be any milestone of interest (e.g., metastases, relapse, or death). ...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2011